M1.
D
[1]
M2.
B
[1]
M3.
D
[1]
M4.
C
[1]
Time Constant = -10/ln(0.5)
Time
Constant = 14s
M5.
D
[1]
M6.
B
[1]
M7.
A
[1]
8. (a) (i) Cp = 2 + 4 = 6 μF A1
(ii) 1/C
= 1/2 + ¼ C1
Cs = 4/3 =1.33 μF A1
(b) (i) 6.0 V A1
(ii) Q
= CpV C1
= 6 × 6 = 36 μC A1
(c) E
= ½ CsV2 C1
= 2.4 × 10–5 A1
(d) (i) The capacitors discharge through
the voltmeter as it has a high resistance B1
(ii) V
= V0e–t/CR
(1/4) =e–t/(6×12) C1
ln (¼) = t / 72 C1
t = 72 ln 4 ≈ 100 s A1
[12]
9. (a) (i) Q
= VC; W = ½ VC.V ( = ½ CV2) (2)
(ii) parabolic shape passing through origin (1)
plotted accurately as W = 1.1 V2 (1) 4
(b) (i) T = RC; = 6.8 × 103 × 2.2 = 1.5 × 104 s = 4.16 h 2
(ii) ΔW = ½ C(V12 –V22) = 1.1(25 – 16) ; =
9.9 (J) 2
(iii) 4
= 5 exp(–t/1.5 × 104) ; giving t = 1.5 × 104 × ln 1.25 = 3.3 × 103 (s) 2
(iv) P = ΔW/Δt = 9.9/3.3 × 103 = 3.0 mW ecf
b(ii) and (iii) 1
allow P = Vav2 /R = 4.52/6.8 × 103 = 2.98 mW
[11]
No comments:
Post a Comment